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1. Seminal ML classification papers
• NN, SVM, DT, ensembles

2. Comparative studies
• MNL vs ML with zero-one classification - 99% 

accuracy!
3. Establishing common methodologies

• probabilistic models, robust validation
4. Hybridisation:

1. Extracting behavioural indicators from ML 
(Martin-Baos et al, 2023; Wang et al, 2020)

2. Assisted specification of RUM (Ortelli et al, 
2021, Hillel et al, 2019)

3. Utility-based ML (Kim and Bansal, 2023; Han et 
al, 2022; Wong & Farooq, 2021; Wang et al, 
2020; Sifringer et al, 2020)

• Predominant focus is still MNL…

A brief history of ML for discrete choice…

Gartner Hype Cycle
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Beyond MNL – state of research

Discrete choice workshop 2024 day 1 – eight talks:
• NL/CNL – 5 talks
• Mixed Logit – 1 talk
• MILP (inc. decompositions) – 2 talks

MNL does not get us far!
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New opportunities with ML

5

van Cranenburgh, Garrido-Valenzuela (2023)

Unstructured data 
(images/text)

Salvadé & Hillel (2024)

Non-linear utilities

Shone & Hillel (2024)

Generative models for complex
sequences 

Lahoz et al (2023)

Complex model specifications

Scalability?



Nicolas Salvadé

nicolas.salvade.22@ucl.ac.uk 

• Technical report:

• Salvadé, Nicolas, and Tim Hillel. "RUMBoost: 
Gradient Boosted Random Utility Models." arXiv
preprint arXiv:2401.11954 (2024).

• Code available on github/pypi: 
https://github.com/NicoSlvd/rumboost 

• See forthcoming presentations at hEART and 
IATBR
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Scaling complex choice models with 
RUMBoost
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https://github.com/NicoSlvd/rumboost


RUMBoost
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• An intrinsically interpretable ML model able to learn nonlinear utility functions
• Each parameter in RUM specification replaced with ensemble of regression trees
• Ensembles grown to directly optimise cost function – need defined gradient and 

Hessian
• Smoothing process on key variables to obtain utility functions with defined gradient
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Gradient Boosting Decision Trees
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Gradient Boosting Decision 
Trees
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• Multiclass classification - one ensemble of regression trees per alternative

• At each iteration: add one regression tree of arbitrary depth per ensemble to directly minimise the cross-entropy 
loss (akin to maximum likelihood estimation for MNL)

• Split points optimised across all variables

• Leaf values are computed from the sum of gradient over the sum of hessian of all observations at each leaf

Alternative J

…

Alternative 1 Alternative 2

𝑉𝑎𝑟. 4

𝑉𝑎𝑟. 1

𝑉𝑎𝑟. 5

𝑉𝑎𝑟. 3

+

𝑉𝑎𝑟. 5

𝑉𝑎𝑟. 1𝑉𝑎𝑟. 6

+

𝑉𝑎𝑟. 3 𝑉𝑎𝑟. 4

𝑉𝑎𝑟. 2

𝑉𝑎𝑟. 6

++

𝑉𝑎𝑟. 5

𝑉𝑎𝑟. 1

+…

𝑉𝑎𝑟. 4

𝑉𝑎𝑟. 4

+ + … +

𝑉𝑎𝑟. 3

𝑉𝑎𝑟. 2

+ …



How to make GBDT interpretable?
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Gradient Boosted Utility 
Values (GBUV)
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Parameter K

…

Parameter 1 Parameter 2

𝑉𝑎𝑟. 1

𝑉𝑎𝑟. 1

𝑉𝑎𝑟. 𝑗

𝑉𝑎𝑟. 𝑖

+

𝑉𝑎𝑟. 2

𝑉𝑎𝑟. 2 𝑉𝑎𝑟. 2

+

𝑉𝑎𝑟. 1 𝑉𝑎𝑟. 1

𝑉𝑎𝑟. 1 

𝑉𝑎𝑟. 𝑗 

++

𝑉𝑎𝑟. 1

𝑉𝑎𝑟. 1

+…

𝑉𝑎𝑟. 2

𝑉𝑎𝑟. 2 

+ + … +

𝑉𝑎𝑟. 𝑗

𝑉𝑎𝑟. 𝑖

+ …

• Parameter-specific variables

• Interpretable utility values

• Monotonicity can be imposed

𝑉𝑎𝑟. 1 𝑉𝑎𝑟. 2 𝑉𝑎𝑟.  𝑖, 𝑗

• Replicate RUM utility functions with one ensemble per parameter fitted on corresponding variables (constants 
can be extracted from normalisation of leaf values)

• At each iteration: add one regression tree of arbitrary depth per ensemble to directly minimize any desired cost 
function (for which gradient and Hessian can be defined)



GBUV – Example of utility 
values
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• Cycling travel time (LPMC dataset)

• Piece-wise constant values
• No defined gradient…
• …therefore no behavioural 

indicators



How to smooth GBUV?
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Piecewise Cubic Utility 
Function (PCUF)

• Interpolation of GBUV with monotonic Hermite splines (Fritsch and Butland, 1984)
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VoT
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Attribute interaction

16BIG Colloqium

• Variables can be arbitrarily 
interacted within parameter 
ensembles

• Shown here: cycling 
duration (monotonic) with 
age



Bootstrapping

• Model does not fully 
converge – do not obtain 
confidence intervals

• Can be estimated 
empirically using 
bootstrapping
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Extension to complex model specifications
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Assumption on the error term:

Independent and identically distributed MNL

Correlation within alternatives  NL, CNL

Additional parameters (𝜇 and 𝛼) as well as nested 

structure are optimised with scipy.minimize



Case study – LPMC dataset
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• Case study on a mode choice dataset (appr. 80000 observations and 4 alternatives)

• Nests are on motorised modes (public transport and driving) (NL and CNL) and 
flexible modes (walking, cycling and driving) (CNL) 



LPMC – benchmarks
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• All RUMBoost models 
outperform their relative RUM 
while being 20 to 40 times faster

• No loss of interpretability (only 
of formal significance testing)

• RUMBoost models would scale 
well to harder problems



Complex model – mode & location choice
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M. 1

Nests for each transport mode and region

1    2    3              N-2 N-1 N                N+1         2N     2N+1        3N

Zone x Mode alternatives

M. 2

… 

 

M. 3 R. 1 R. 2

…  

 

…   

 

R. 1 R. 2



1. Mode and location choices are inherently linked

2. The utility derived by the choice of a location, with a transportation 
mode, depends on the travel time and some measures of the 
attractiveness of the zone

3. Activity choice is given and impacts the utility function

4. Alternatives with the same transportation mode are correlated

5. Alternatives are spatially correlated
22

Behavioural assumptions03



Case study - Lausanne 
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• MTMC: trip diary dataset collected by the Swiss government 
(2017)

• Using only zones from Lausanne (88 zones) and trips with destination in 
Lausanne (about 3500 trips)

• Zones defined by the Swiss government

• Zone-to-zone travel time and attractivity measures (job density, 
population density) provided by SBB



Group of destinations 
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04

Western 
destinations

Center 
destination

s

Eastern 
destination
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Case study – Lausanne model
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• Trips with destination to Lausanne only (about 3000 observations)

𝑉𝑚𝑙𝑛 = 𝐴𝑆𝐶𝑚 + 𝛽𝑐𝑜𝑠𝑡,𝑚COST𝑙𝑚 + 𝛽𝑇𝑇,𝑚TT𝑙𝑚 + ∑𝛽𝑎(𝑎𝑛JOBDENSITY𝑙 + 𝑎𝑛POPDENSITY𝑙)

• 88 zones in Lausanne and 3 transportation modes (car, pt, soft modes) – 264 
alternatives

• 2*88 (cost) + 3*88 (travel time) + 6*88 (zone attractiveness) = 968 features!



Lausanne study – estimation results
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New approach implemented 
to estimate nesting 
parameters 𝜇, 𝛼 directly



Lausanne study – GBUV
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Case study – nationwide model
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• Full observations from the MTMC 2015 dataset (about 180000 observations, 
147000 in the training set)

• 23895 alternatives (7965 zones and 3 transportation modes)

• 3*7965 (travel time per mode) + 6*7965 (zone attractiveness per activity) + 5 
constants (mode and zone type) = 71690 features per choice situation (cost 
omitted)

• Impossible to estimate with conventional CNL (as is…!)



Engineering detail:
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• Gradient and hessian are computed on the GPU using pytorch

• Batch estimation to avoid memory errors (2000 observations)

• Nesting parameters (𝜇, 𝛼) are minimized at each boosting round, using SLSQP 
(scipy.minimize)



Nationwide model – Estimation results
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Nationwide model – GBUV
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Nationwide model – 
choice probabilities
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Work trip for Lausanne 
resident:



Daily activity scheduling with Caveat
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Fred Shone

frederick.shone.17@ucl.ac.uk 

• Code available on github/pypi: 
https://github.com/fredshone/caveat 

• See forthcoming presentations at hEART and 
MUM

mailto:frederick.shone.17@ucl.ac.uk
https://github.com/fredshone/caveat


Why is Activity-based Modelling hard?
- An individual’s activity sequence is result of multiple different choices, with no clear order of 

dependency, even for simplest case:

When? Where? Which?

How?

When?

How?

Where?



The Status Quo
Existing approaches are complex, requiring 
many interacting discrete choices

Results in models that are either:

• Expensive to develop and use, or
• Lacking realistic diversity of outputs

Efforts to combine multiple activity 
scheduling choices simultaneously, such as 
OASIS, are computationally challenging – 
both for estimation and simulation

SBB Activity Modelling Framework

Example schedules from London Travel Demand Survey



Deep Generative Models for activity scheduling
• Learn to model observed distribution of historic data using Conditional 

Variational Auto-Encoders (CVAEs)
• Map from a known random distribution (typically Gaussian) to observed activity schedules
• Conditional on agent attributes such as location, age, gender, etc
• New synthetic schedules can then be sampled efficiently by drawing from latent space

• Possible applications:
• Anonymisation/obfuscation of historic data
• Resampling for bias correction and simple forecasting
• Simulation through up-sampling for realistic and diverse populations

• Three key technical contributions
1. Novel variable length sequence encoding of activity schedules, evaluated against fixed 

length image-like encoding
2. CVAE architectures derived from language (sequence) models
3. Domain specific evaluation framework

• Case study:
• 40,000 activity schedules from the UK National Travel Survey



Contribution 1: Encoding

https://github.com/fredshone/caveat

1. Recorded schedule

2. Travel incorporated into previous activity

3. Image-like encoding – fixed length 
sequence with 10-minute resolution

4. Sentence-like encoding – variable length 
sequence with ordering and associated 
duration for each activity

https://github.com/fredshone/caveat


Contribution 2: CVAE Architecture

https://github.com/fredshone/caveat

https://github.com/fredshone/caveat


Contribution 3: Evaluation

https://github.com/fredshone/caveat

• Correctness
• Unlike traditional models, generative approaches cannot be evaluated via a 

withheld test dataset
• Consider a model generating text or images - how do we measure how good 

the synthetic test, or image, or activity schedule is?
• We provide an evaluation framework that measures the distance between 

key distributions in the observed and synthetic populations, such as 
participations, orderings and timings.

• Creativity
• It is also desirable for our models to be creative.
• We therefore include evaluation of the models ability to generate diverse 

and novel activity schedules

https://github.com/fredshone/caveat


Example output



Evaluation - Aggregate Activity Histograms



Evaluation - Tour Structures



Evaluation - Activity Times and Durations



Evaluation - Joint Activity Starts and Durations



Scalability
• Able to learn from single year of UK travel survey data

• Can be extended to alternative data sources - mobile and GPS

• Requires GPU, but extremely efficient
• On a modern GPU (~1k GBP), trains in ~20 minutes and can generate new populations near 

instantaneously.

• The model will likely scale easily to:
• More data and larger populations

• More - and more complex - choices, such as locations and trip mode

• Longer (multi-day) sequences

• Household activity sequences

• Can be incorporated into existing agent-based simulations models, replacing numerous 
discrete models (primary participation, secondary participation, tour type) and 
scheduling algorithms with a single step.



Thank you
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Fred Shone

frederick.shone.17@ucl.ac.uk 

Nicolas Salvadé

nicolas.salvade.22@ucl.ac.uk 

Tim Hillel

tim.hillel@ucl.ac.uk 

https://tinyurl.com/big-ucl 
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