Combining choice and response time data to analyse the ride-acceptance behaviour of ride-sourcing drivers

Mana Meskar¹, **Rico Krueger**², Filipe Rodrigues², Shirin Aslani¹, Mohammad Modarres¹

¹ Sharif University of Technology ² Technical University of Denmark (DTU)

16th Workshop on Discrete Choice Models EPFL, 6–8 June 2024

Context

Ride-sourcing platforms

- have grown rapidly in recent years.
- are two-sided transportation markets.
- match passenger requests for on-demand transportation with available drivers.

Ride-sourcing drivers

• can accept or reject rides as they prefer.

Individual decision-making

• is central to ride-sourcing platforms.

Drivers' ride acceptance decisions

Request sent to driver. ↓ Driver sees ride features. ↓ Driver must decide within a few seconds whether to accept ride. ↓ Otherwise, ride is proposed to other drivers.

Motivation

- Efficiently match passenger and drivers to enhance platform performance
 - Reduce wait times, satisfy demand, maximise driver earnings, increase passenger and driver loyalty
 - Our case study: Drivers decline approx. 77% of ride requests.
- Incorporate driver preferences into matching algorithms to improve matching efficiency.
- Explain/predict drivers' ride-acceptance decisions to optimise ride-sourcing platforms.

Related work

Passenger behaviour

Driver behaviour

Empirical findings:

• Significant variation in ride-acceptance behaviour across socio-demographic variables, ride attributes, times of day, spatial attributes.

Methodology:

- Predominant focus on explaining/predicting outcomes.
- Response times have been ignored.

Investigate ride-sourcing drivers' ride acceptance decisions considering both choice and response time data

- Formulate hierarchical drift-diffusion model to analyse ride-acceptance decisions
- Apply model to real-world data from a ride-sourcing platform

Background

Discrete choice models

- Outcome-oriented and static
- Predict decision outcomes under specified behavioural constraints (e.g. based on random utility theory)
- Widely adopted in transport and other applied economics disciplines to analyse complex decisions

Sequential sampling models

- Process-oriented and dynamic
- Decision-makers accumulate evidence regarding available options over time until a threshold is crossed.
- Used mostly in psychology to analyse simple perceptual decision-making tasks

Drift diffusion model (DDM)

Evidence accumulation modelled as Wiener diffusion process:

$$Z(t_j) = Z(t_{j-1}) + \mu \Delta t + \sigma \Delta W(t_j)$$

with $\Delta t = t_j - t_{j-1}$, $\Delta W(t_j) \sim \mathcal{N}(0, \Delta t)$, Z(0) = b.

Key parameters:

- Threshold *a*: Response criterion, captures speed-accuracy trade-off.
- Bias ratio w: Initial bias towards upper or lower threshold (*b* = *wa*).
- Drift rate μ : Speed of evidence accumulation.
- Process noise σ : fixed to one for identification.

PDF and CDF of the DDM

Probability of absorption at lower boundary at time *t*:

$$f(t|\mu, a, w) = \frac{\pi}{a^2 \exp\left(-\mu a w - \frac{m u^2 t}{2}\right)} \times \sum_{k=1}^{\infty} k \sin(k\pi w) \exp\left[-\frac{1}{2} \left(\frac{k\pi}{a}\right)^2 t\right]$$

Probability of absorption at lower boundary until time *t*:

$$F(t|\mu, a, w) = P(\mu, a, w) - \frac{\pi}{a^2} \exp\left(-\mu aw - \frac{\mu^2 t}{2}\right) \times \sum_{k=1}^{\infty} \frac{2k \sin(k\pi w) \exp\left[-\frac{1}{2}\left(\frac{k\pi}{a}\right)^2 t\right]}{\mu^2 + k^2 \frac{\pi^2}{a^2}}$$

where $P(\mu, a, w) = \begin{cases} \frac{\exp(-2\mu a) - \exp(-2\mu a) - \exp(-2\mu aw)}{\exp(-2\mu a) - 1} & \mu \neq 0\\ w & \mu = 0 \end{cases}$

Modelling ride-acceptance decisions under the go/no-go paradigm

• Drivers need to accept ride requests within 15 seconds, and do nothing to reject rides (= go/no-go decision).

• Let
$$z_{dr} = \begin{cases} (y_{dr}, t_{dr}) & \text{if } y_{dr} = 1 \\ y_{dr} & \text{if } y_{dr} = 0 \end{cases}$$

Probability of accepting/rejecting ride request

$$egin{aligned} & \mathsf{P}(z_{dr}|\mu_{dr}, \mathsf{a}_{dr}, \mathsf{w}_{dr}) = egin{cases} f(t_{dr}|-\mu_{dr}, \mathsf{a}_{dr}, 1-\mathsf{w}_{dr}) & ext{if ride is accepted} \ 1-\mathsf{F}(t_{\mathsf{end}}|-\mu_{dr}, \mathsf{a}_{dr}, 1-\mathsf{w}_{dr}) & ext{if ride is rejected} \end{aligned}$$

- Infinite sums approximated using efficient truncation approximations.
- DDM parameters depend on attributes of requests and drivers.
- Use MSL to accommodate random parameters \rightarrow HDDM.

Behavioural indicators

Arc elasticity of probability of accepting until time t

$$F(t|\mu, a, w)$$

Arc elasticity of expected response time t

$$\mathbb{E}(t|\mu,a,w) = \begin{cases} \frac{a}{\mu} \coth(a\mu) - \frac{aw}{\mu} \coth(aw\mu) & \mu \neq 0\\ \frac{1}{3}a^2(1-w)^2 + \frac{2}{3}a^2w(1-w) & \mu \to 0 \end{cases}$$

Real-world case study

- Accepted and rejected ride requests from a ride-sourcing platform operating in a city in south of Iran from Aug 2019 to Jan 2020.
- Extensive details regarding socio-demographic profiles of drivers and ride request attributes.
- Original dataset includes 8,062,050 records.
- Randomly select 20 records each from 1,000 drivers for model training and 200 drivers for out-of-sample validation.

Response time distribution across requests

Results: In- and out-of-sample predictive accuracy

Model	In-sample loglik.	Out-of-sample loglik.
Logit	-10302.524	-2062.653
Random parameter logit	-10177.815	-2046.691
DDM	-24766.444	-4946.175
HDDM	-24648.732	-4923.391

• Logit does not include response time because of complete separation.

Results: DDM/HDDM parameter estimates – threshold and bias

Variable	DDM	HDDM		
Threshold				
Constant	-0.992***	-1.156***		
Full-time Employment Status	0.185***	0.254***		
Rainfall Volume	-1.886**	-1.886**		
Time Since Last Proposed Request	0.579***	0.575***		
Response for Last Proposed Request	0.327***	0.298***		
Response for Before Last Proposed Request	0.409***	0.380***		
Driver Ride Count	1.048***	0.854***		
Number of Proposed Requests	-0.965***	-0.824^{***}		
Sigma of Random parameter		-0.365***		
Bias	1			
Constant	1.506***	1.533***		
Driver Gender	-0.002	0.012		
Driver Age	0.818***	0.815^{***}		
Rainfall Volume	0.43*	0.391*		
Number of Rejection Since Last Ride	0.215*	0.147*		
Experienced Driver	-0.059***	-0.063***		
Significance levels: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$				

p < 0.01, p < 0.05, p < 0.1

Results: DDM/HDDM parameter estimates – drift rate

Variable	DDM	HDDM		
Drift rate				
Constant	-0.048	-0.023		
Ride Fare	0.143***	0.164***		
Price Per Distance	-0.553*	-0.537***		
Driver Proximity Index	0.488***	0.510***		
Log of Driver Proximity Index	-0.150^{***}	-0.159^{***}		
Request Rejection Count	-0.115***	-0.123***		
Experienced Driver	-0.038***	-0.051^{***}		
Distance Peak Interaction	0.370***	0.447***		
Gender Price Interaction	-0.002	-0.017		
Sigma of Random parameter		-0.090***		
Significance levels: *** $ ho$ < 0.01, ** $ ho$ < 0.05, * $ ho$ < 0.1				

Results: Elasticities of acceptance probability

Results: Elasticities of expected response times

Variable	DDM	HDDM
Rainfall Volume	0.394	0.357
Ride Fare	-0.097	-0.110
Ride Distance	-0.010	-0.018
Driver Proximity Index	-0.198	-0.202
Time Since Last Proposed Request	-0.071	-0.071
Full-time Employment Status	-0.016	-0.019
Experienced Driver	0.075	0.070

Conclusion

- Applied HDDM to real-world data from a ride-sourcing platform to analyse drivers' ride acceptance decisions.
- Stylised facts:
 - Proximity to requested ride's origin, higher ride fare, longer ride distance, full-time employment status → faster responses
 - Rain \rightarrow **slower** responses
- Future research directions:
 - Explore other sequential sampling models
 - Integrate HDDM into matching algorithms

Thank you