Sequential Nested RI model: new take

Pavel Ilinov (EPFL), Andrei Matveenko (Mannheim U)

16th workshop on Discrete Choice Models, EPFL June 7, 2024

This project: choice theory based on sequential info acquisition (RI)

What is RI: Rational Inattention

- Model of info acquisition!
- DM chooses information nonparametrically, controlling whole distribution of noise
- Mechanics: unknown state \Rightarrow signal \Rightarrow action
- Generate random choice data

This project: choice theory based on sequential info acquisition (RI)

What is RI: Rational Inattention

- Model of info acquisition!
- DM chooses information nonparametrically, controlling whole distribution of noise
- Mechanics: unknown state \Rightarrow signal \Rightarrow action
- Generate random choice data

How does it differ from RUM?

Randomness

classical RUM

analyst has limited access to DM's preferences \Rightarrow unobserved part is random for him \Rightarrow for him choice is stochastic if $v_i = u_i + \varepsilon_i$ with $\varepsilon_i \sim EV(0, \frac{1}{\lambda})$ then $P(i) = \frac{e^{\frac{u_i}{\lambda}}}{\sum_i e^{\frac{u_i}{\lambda}}}$ incomplete information (RI) model analyst and DM do not know preferences preferences are random

 \Rightarrow DM acquires info and learns her preferences

 \Rightarrow choice depends on info \Rightarrow choice is random

for entropy cost of info $P(i|u) = \frac{e_{\lambda}^{i} + \log P(i)}{\sum_{i} e_{\lambda}^{i} + \log P(j)}$

MNL admits IIA \Rightarrow very restrictive substitution pattern

Breaking IIA using RI:

• RI-MNL breaks IIA varying prior belief

MNL admits IIA \Rightarrow very restrictive substitution pattern

Breaking IIA using RI:

- RI-MNL breaks IIA varying prior belief
- Fosgerau et al. (2020): generalization of RI models via costs as

 $\mathbb{E}_{U}[U \cdot p(i|U)] - \text{Cost of Info}$

 \Rightarrow general RI breaks IIA varying cost of info

MNL admits IIA \Rightarrow very restrictive substitution pattern

Breaking IIA using RI:

- RI-MNL breaks IIA varying prior belief
- Fosgerau et al. (2020): generalization of RI models via costs as

 $\mathbb{E}_{U}[U \cdot p(i|U)] - \text{Cost of Info}$

 \Rightarrow general RI breaks IIA varying cost of info

• This talk: RI breaks IIA varying payoff structure

Put additive structure on utilities

Inspiration from mixed logit:

 $\varepsilon = \varepsilon_{nest} + \varepsilon_{idio},$

Sequential decision process:

- OM may learn about common component
- OM may learn about idiosyncratic component
- OM chooses an option

- Three options: 1st, 2nd are random, 3rd gives fixed payoff
- Random option: $u = v + \eta$, both errors are binary independent r.v. with priors μ_v, μ_η

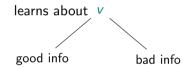
- Three options: 1st, 2nd are random, 3rd gives fixed payoff
- Random option: $u = v + \eta$, both errors are binary independent r.v. with priors μ_v, μ_η
- Timing:
 - First period: learning about v
 - 2 Second period: depending on info may learn about η
 - Make a choice

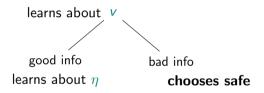
- Three options: 1st, 2nd are random, 3rd gives fixed payoff
- Random option: $u = v + \eta$, both errors are binary independent r.v. with priors μ_v, μ_η
- Timing:
 - First period: learning about v
 - 2 Second period: depending on info may learn about η
 - Make a choice
- Cost of learning: entropic with marginal costs λ_1, λ_2
- Payoff: expected value of chosen option net cost of info

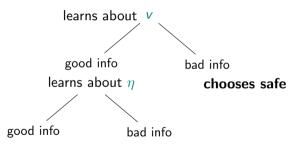
- Three options: 1st, 2nd are random, 3rd gives fixed payoff
- Random option: $u = v + \eta$, both errors are binary independent r.v. with priors μ_v, μ_η
- Timing:
 - First period: learning about v
 - 2 Second period: depending on info may learn about η
 - Make a choice
- Cost of learning: entropic with marginal costs λ_1, λ_2
- Payoff: expected value of chosen option net cost of info

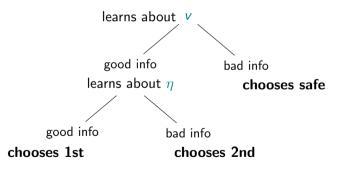
• Parameters: DM chooses all three options

learns about V









• Example: presearch + search

• Example: presearch + search

- DM decides about vacation
 - **O** Presearch: check online average price level of tickets
 - 2 If high: stay home and save money, if low: book dates for vacation
 - § Search: low \Rightarrow after a while choose exact airline among available options

Figure: Presearch as yes/no decision

Figure: Search as choice of the best option

• Formula in (v_h, η_h) state:

$$P(1|v_h, \eta_h) = \frac{e^{\frac{v_h + \mathbb{E}V_2}{\lambda_1} + \log P(12)}}{e^{\frac{v_h + \mathbb{E}V_2}{\lambda_1} + \log P(12)} + e^{\frac{w}{\lambda_1} + \log P(3)}} \cdot \frac{e^{\frac{\eta_h}{\lambda_2} + \log P(1)}}{e^{\frac{\eta_h}{\lambda_2} + \log P(1)} + e^{\frac{\eta_l}{\lambda_2} + \log P(1)}},$$

where $\mathbb{E} V_2$ is expected payoff from the risky nest

- Main departure from nested logit: dynamics + prior beliefs
 - Dynamic optimality: in first period DM takes into account optimal average payoff from second period
 - Prior beliefs: utility shifters P(.)

• What about IIA?

• What about IIA?

- Fosgerau et al. (2020) critique of RI-logit:
 - Fix RI-logit setup
 - Add new state, in which only one payoff changes (price discount)
 - IIA for unchanged options between two states

• What about IIA?

- Fosgerau et al. (2020) critique of RI-logit:
 - Fix RI-logit setup
 - Add new state, in which only one payoff changes (price discount)
 - IIA for unchanged options between two states
- Our case:
 - Composite state structure: (common, idio)
 - $\bullet \ \Rightarrow \ \text{in new state } only \ \text{idio changes}$
 - $\bullet \ \Rightarrow$ IIA breaks thanks to "nested" procedure

Question: can simple nested logit recover substitution pattern from sequential nested RI logit?

Synthetic data generation:

- Assume sequential nested RI logit
- Solve the model numerically for set of parameters
- Generate states and synthetic data
- **③** Estimate nested logit parameters: β ($\beta_{true} = 1$), λ

Answer: Usually nested logit performs poorly: over/underestimates correlation and β

... but not always!

- Fix intermediate values of λ_1, λ_2 , options are homogenous ex-ante
 - \Rightarrow in nested logit $\beta\approx$ 1, $\lambda>1$ and significant
 - \Rightarrow nested logit predicts average behavior very well

• Why? Symmetric mistakes for risky options mirrors nested logit substitution pattern

Microfoundation

- Pros: "Nested" procedure as optimal sequential learning strategy
- Cons: payoff structure is very ad-hoc

Substitution

- Pros: richer substitution pattern than in RI-logit, Nested logit
- Cons: too many parameters to control

Thank you for your (in)attention!